New Cores for \triangle-Edge-Colorable Graphs

Jessica McDonald Gregory J. Puleo

Atlanta Lecture Series XXII

November 3, 2018

Edge Coloring, Edge Chromatic Number

- A proper edge coloring of a graph assigns a color to each edge so that edges sharing an endpoint (including parallel edges) get different colors.
- The edge chromatic number of G, written $\chi^{\prime}(G)$, is smallest number of colors in a proper edge coloring.
- χ^{\prime} (Pete $)=4$.

Vizing's Theorem for Simple Graphs

Theorem (Vizing 1964)

If G is a simple graph, then $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.

Theorem (Holyer 1981)

It is NP-hard to determine, for a simple graph G, whether $\chi^{\prime}(G)=\Delta(G)$ or whether $\chi^{\prime}(G)=\Delta(G)+1$.

Two approaches to continue thinking about edge coloring:

- Look for sufficient conditions. Find a general property P such that if simple G has property P, then $\chi^{\prime}(G)=\Delta(G)$.
- Extend to multigraphs.

Vizing's Theorem for Simple Graphs

Theorem (Vizing 1964)

If G is a simple graph, then $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.

Theorem (Holyer 1981)

It is NP-hard to determine, for a simple graph G, whether $\chi^{\prime}(G)=\Delta(G)$ or whether $\chi^{\prime}(G)=\Delta(G)+1$.

Two approaches to continue thinking about edge coloring:

- Look for sufficient conditions. Find a general property P such that if simple G has property P, then $\chi^{\prime}(G)=\Delta(G)$.
- Extend to multigraphs.

Fournier's Theorem, Hoffman-Rodger Theorem

Definition

The core of a simple graph G is the subgraph induced by its vertices of degree $\Delta(G)$.

Theorem (Fournier 1973)

Let G be a simple graph. If the core of G is a forest, then $\chi^{\prime}(G)=\Delta(G)$.

Fournier's Theorem, Hoffman-Rodger Theorem

Definition

The core of a simple graph G is the subgraph induced by its vertices of degree $\Delta(G)$.

Theorem (Fournier 1973)

Let G be a simple graph. If the core of G is a forest, then $\chi^{\prime}(G)=\Delta(G)$.
Hoffman-Rodger (1988) defined a B-queue to be a particular vertex ordering of a graph (details later).

Theorem (Hoffman-Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a "full B-queue", then $\chi^{\prime}(G)=\Delta(G)$.

Hoffman-Rodger also showed: H is a forest $\Longrightarrow H$ has a full B-queue.

Fan, cfan, and B-Queues

- Scheide and Stiebitz (2010) introduced a parameter called the Fan number of G, written $\operatorname{Fan}(G)$, and showed that $\chi^{\prime}(G) \leq \operatorname{Fan}(G)$ for all G. (Details later.)

Fan, cfan, and B-Queues

- Scheide and Stiebitz (2010) introduced a parameter called the Fan number of G, written $\operatorname{Fan}(G)$, and showed that $\chi^{\prime}(G) \leq \operatorname{Fan}(G)$ for all G. (Details later.)
- $\operatorname{Fan}(G)$ is polynomially computable. Many upper bounds on $\chi^{\prime}(G)$, including Vizing's Theorem, are actually upper bounds on $\operatorname{Fan}(G)$.
- We define a variant of this parameter, the cfan number, and prove:

Theorem (McDonald-P.)

Let G be a simple graph, and let H be its core. If $\operatorname{cfan}(H) \leq 0$, then $\chi^{\prime}(G)=\operatorname{Fan}(G)=\Delta(G)$.

- We show:
H is a forest $\Longrightarrow H$ has a full B-queue $\Longrightarrow \operatorname{cfan}(H) \leq 0$.
- However, there are graphs with $\operatorname{cfan}(H) \leq 0$ which do not have a full B-queue.

Vizing's Fan Inequality

If $x y$ is an edge in multigraph J, then $J-x y$ is the subgraph with one fewer copy of $x y$.

Theorem (Vizing 1964)

Let G be a multigraph, let $k \geq \Delta(G)$, and let $J \subset G$.
Suppose that $J-x y$ is k-edge-colorable for some $x y \in E(J)$.
Either J is k-edge-colorable, or there is a vertex set $Z \subset N_{J}(x)$ such that:
(1) $|Z| \geq 2$,
(2) $y \in Z$, and
(3) $\sum_{z \in Z}\left(d_{J}(z)+\mu_{J}(x, z)-k\right) \geq 2$.

Conversely: if J is a minimal non- k-edge-colorable subgraph of G, then for every $x y \in E(J)$, such a set Z must exist.

Vizing's Fan Inequality

If $x y$ is an edge in multigraph J, then $J-x y$ is the subgraph with one fewer copy of $x y$.

Theorem (Vizing 1964)

Let G be a multigraph, let $k \geq \Delta(G)$, and let $J \subset G$.
Suppose that $J-x y$ is k-edge-colorable for some $x y \in E(J)$.
Either J is k-edge-colorable, or there is a vertex set $Z \subset N_{J}(x)$ such that:
(1) $|Z| \geq 2$,
(2) $y \in Z$, and
(3) $\sum_{z \in Z}\left(d_{J}(z)+\mu_{J}(x, z)-k\right) \geq 2$.

Conversely: if J is a minimal non- k-edge-colorable subgraph of G, then for every $x y \in E(J)$, such a set Z must exist.

Observation

If $J-x y$ is k-edge colorable and $d(x)+d(y)-\mu_{J}(x, y) \leq k$, then J is k-edge-colorable. (Edge xy only sees at most $k-1$ colors.)

Definition of Fan Number (Scheide-Stiebitz 2010)

Let G be a multigraph. For $J \subset G$ and $x y \in E(J)$, the fan degree of the pair (x, y), written $\operatorname{deg}_{J}(x, y)$, is the smallest nonnegative k such that either:
(1) $d_{J}(x)+d_{J}(y)-\mu_{J}(x, y) \leq k$, or
(2) $\sum_{z \in Z}\left(d_{J}(z)+\mu_{J}(x, z)-k\right) \leq 1$ for all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$.

Definition of Fan Number (Scheide-Stiebitz 2010)

Let G be a multigraph. For $J \subset G$ and $x y \in E(J)$, the fan degree of the pair (x, y), written $\operatorname{deg}_{J}(x, y)$, is the smallest nonnegative k such that either:
(1) $d_{J}(x)+d_{J}(y)-\mu_{J}(x, y) \leq k$, or
(2) $\sum_{z \in Z}\left(d_{J}(z)+\mu_{J}(x, z)-k\right) \leq 1$ for all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$.
The fan number $\operatorname{fan}(G)$ of the graph G is defined by

$$
\operatorname{fan}(G)=\max _{\substack{J \subset G \\ E(J) \neq \emptyset}} \min \{\operatorname{deg} J(x, y): x y \in E(J)\}
$$

The Fan number $\operatorname{Fan}(G)$ is then given by $\operatorname{Fan}(G)=\max \{\operatorname{fan}(G), \Delta(G)\}$.

Definition of Fan Number (Scheide-Stiebitz 2010)

Let G be a multigraph. For $J \subset G$ and $x y \in E(J)$, the fan degree of the pair (x, y), written $\operatorname{deg}_{J}(x, y)$, is the smallest nonnegative k such that either:
(1) $d_{J}(x)+d_{J}(y)-\mu_{J}(x, y) \leq k$, or
(2) $\sum_{z \in Z}\left(d_{J}(z)+\mu_{J}(x, z)-k\right) \leq 1$ for all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$.
The fan number $\operatorname{fan}(G)$ of the graph G is defined by

$$
\operatorname{fan}(G)=\max _{\substack{J \subset G \\ E(J) \neq \emptyset}} \min \left\{\operatorname{deg}_{J}(x, y): x y \in E(J)\right\}
$$

The Fan number $\operatorname{Fan}(G)$ is then given by $\operatorname{Fan}(G)=\max \{\operatorname{fan}(G), \Delta(G)\}$.

Theorem (Scheide-Stiebitz 2010)

For every multigraph $G, \chi^{\prime}(G) \leq \operatorname{Fan}(G)$.
Idea: by previous slide, if J is a minimal non- k-edge-colorable subgraph for $k \geq \Delta(G)$, then for every pair (x, y), we must have $\operatorname{deg}_{J}(x, y)>k$.

Definition of cfan

Definition (Scheide-Stiebitz 2010)

$\operatorname{fan}(G)=\max _{\substack{J \subset G \\ E(J) \neq \emptyset}} \min \left\{\operatorname{deg}_{J}(x, y): x y \in E(J)\right\}$
For $K \subset H$, and $x y \in E(K)$ the cfan degree of the pair (x, y), written $\operatorname{cdeg}_{K}(x, y)$, is the smallest nonnegative ℓ such that:
$\sum_{z \in Z}\left(d_{K}(z)-d_{H}(z)+\mu_{K}(x, z)-\ell\right) \leq 1$ for all $Z \subset N_{K}(x)$ with $y \in Z$.
The cfan number of H is then defined by

$$
\operatorname{cfan}(H)=\max _{\substack{K \subset H \\ E(K) \neq \emptyset}} \min \left\{\operatorname{cdeg}_{H, K}(x, y): x y \in E(K)\right\}
$$

If $E(H)=\emptyset$, then we put $\operatorname{cfan}(H)=0$.

Theorem (McDonald-P.)

Let G be a simple graph, and let H be its core. If $\operatorname{cfan}(H) \leq 0$, then $\operatorname{fan}(G) \leq \Delta(G)$. Thus $\chi^{\prime}(G) \leq \operatorname{Fan}(G)=\Delta(G)$.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$. Let $K=J \cap V(H)$.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$. Let $K=J \cap V(H)$.
Easy Case: K does not contain an edge. Let (x, y) be any pair with $x y \in E(J)$, taking $x \in K$ if possible.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$. Let $K=J \cap V(H)$.
Easy Case: K does not contain an edge. Let (x, y) be any pair with $x y \in E(J)$, taking $x \in K$ if possible.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$,

$$
\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1
$$

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$. Let $K=J \cap V(H)$.
Easy Case: K does not contain an edge. Let (x, y) be any pair with $x y \in E(J)$, taking $x \in K$ if possible.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$,

$$
\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1
$$

- Any $z \in N_{J}(x)$ is outside core, hence $d_{G}(z)+1 \leq \Delta(G)$.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$. Let $K=J \cap V(H)$.
Easy Case: K does not contain an edge. Let (x, y) be any pair with $x y \in E(J)$, taking $x \in K$ if possible.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$,

$$
\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1
$$

- Any $z \in N_{J}(x)$ is outside core, hence $d_{G}(z)+1 \leq \Delta(G)$.
- Therefore,

$$
\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq \sum_{z \in Z} 0=0 .
$$

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$.
Let $K=J \cap V(H)$.
Harder Case: K contains an edge. Take $x y \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
$G \quad$ Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$.
Let $K=J \cap V(H)$.
Harder Case: K contains an edge. Take $x y \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$, $\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1$.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
$G \quad$ Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$. Let $K=J \cap V(H)$.
Harder Case: K contains an edge. Take $x y \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$, $\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1$.

- Any $z \in Z \backslash V(K)$ is outside core, hence contributes at most 0 to the sum.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
$G \quad$ Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$.
Let $K=J \cap V(H)$.
Harder Case: K contains an edge. Take $x y \in E(K)$ with
$\operatorname{cdeg}_{K}(x, y) \leq 0$.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$,
$\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1$.

- Any $z \in Z \backslash V(K)$ is outside core, hence contributes at most 0 to the sum.
- For vertices $z \in Z \cap V(K)$, we have

$$
d_{J}(z)+1 \leq \Delta(H)+\left(d_{K}(z)-d_{H}(z)\right)+1,
$$

with an upper bound on $\sum_{z \in Z}\left(1+d_{K}(z)-d_{H}(z)\right)$ from cfan ≤ 0.

Proof Sketch: $\operatorname{cfan}(H) \leq 0 \Longrightarrow \operatorname{fan}(G) \leq \Delta(G)$

To show $\operatorname{fan}(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$.
$G \quad$ Need: a pair (x, y) with $x y \in E(J)$ such that $\operatorname{deg}_{J}(x, y) \leq \Delta(G)$.
Let $K=J \cap V(H)$.
Harder Case: K contains an edge. Take $x y \in E(K)$ with
$\operatorname{cdeg}_{K}(x, y) \leq 0$.
Need: For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$,
$\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right) \leq 1$.

- Any $z \in Z \backslash V(K)$ is outside core, hence contributes at most 0 to the sum.
- For vertices $z \in Z \cap V(K)$, we have

$$
d_{J}(z)+1 \leq \Delta(H)+\left(d_{K}(z)-d_{H}(z)\right)+1,
$$

with an upper bound on $\sum_{z \in Z}\left(1+d_{K}(z)-d_{H}(z)\right)$ from cfan ≤ 0.

- This gives the desired bound on $\sum_{z \in Z}\left(d_{J}(z)+1-\Delta(G)\right)$.

Definition of B-Queues (Hoffman-Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices $\left(u_{1}, \ldots, u_{q}\right)$ together with a sequence of vertex subsets $\left(S_{0}, S_{1}, \ldots, S_{q}\right)$ such that:
(1) $S_{0}=\emptyset$, and:
(2) For all $i \in[q]$:

- $S_{i}=N\left(u_{i}\right) \cup\left\{u_{i}\right\} \cup S_{i-1}$,
- $1 \leq\left|S_{i} \backslash S_{i-1}\right| \leq 2$,
- $u_{i} \notin\left\{u_{1}, \ldots, u_{i-1}\right\}$, and
- $\left|S_{i} \backslash\left(S_{i-1} \cup\left\{u_{i}\right\}\right)\right| \leq 1$.

A B-queue is full if $S_{q}=V(B)$. Example (vertices of S_{i} are colored red):

Theorem (Hoffman-Rodger 1988)

If G is simple and its core admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Definition of B-Queues (Hoffman-Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices $\left(u_{1}, \ldots, u_{q}\right)$ together with a sequence of vertex subsets $\left(S_{0}, S_{1}, \ldots, S_{q}\right)$ such that:
(1) $S_{0}=\emptyset$, and:
(2) For all $i \in[q]$:

- $S_{i}=N\left(u_{i}\right) \cup\left\{u_{i}\right\} \cup S_{i-1}$,
- $1 \leq\left|S_{i} \backslash S_{i-1}\right| \leq 2$,
- $u_{i} \notin\left\{u_{1}, \ldots, u_{i-1}\right\}$, and
- $\left|S_{i} \backslash\left(S_{i-1} \cup\left\{u_{i}\right\}\right)\right| \leq 1$.

A B-queue is full if $S_{q}=V(B)$. Example (vertices of S_{i} are colored red):

Theorem (Hoffman-Rodger 1988)

If G is simple and its core admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Definition of B-Queues (Hoffman-Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices $\left(u_{1}, \ldots, u_{q}\right)$ together with a sequence of vertex subsets $\left(S_{0}, S_{1}, \ldots, S_{q}\right)$ such that:
(1) $S_{0}=\emptyset$, and:
(2) For all $i \in[q]$:

- $S_{i}=N\left(u_{i}\right) \cup\left\{u_{i}\right\} \cup S_{i-1}$,
- $1 \leq\left|S_{i} \backslash S_{i-1}\right| \leq 2$,
- $u_{i} \notin\left\{u_{1}, \ldots, u_{i-1}\right\}$, and
- $\left|S_{i} \backslash\left(S_{i-1} \cup\left\{u_{i}\right\}\right)\right| \leq 1$.

A B-queue is full if $S_{q}=V(B)$. Example (vertices of S_{i} are colored red):

Theorem (Hoffman-Rodger 1988)

If G is simple and its core admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Definition of B-Queues (Hoffman-Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices $\left(u_{1}, \ldots, u_{q}\right)$ together with a sequence of vertex subsets $\left(S_{0}, S_{1}, \ldots, S_{q}\right)$ such that:
(1) $S_{0}=\emptyset$, and:
(2) For all $i \in[q]$:

- $S_{i}=N\left(u_{i}\right) \cup\left\{u_{i}\right\} \cup S_{i-1}$,
- $1 \leq\left|S_{i} \backslash S_{i-1}\right| \leq 2$,
- $u_{i} \notin\left\{u_{1}, \ldots, u_{i-1}\right\}$, and
- $\left|S_{i} \backslash\left(S_{i-1} \cup\left\{u_{i}\right\}\right)\right| \leq 1$.

A B-queue is full if $S_{q}=V(B)$. Example (vertices of S_{i} are colored red):

Theorem (Hoffman-Rodger 1988)

If G is simple and its core admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Definition of B-Queues (Hoffman-Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices $\left(u_{1}, \ldots, u_{q}\right)$ together with a sequence of vertex subsets $\left(S_{0}, S_{1}, \ldots, S_{q}\right)$ such that:
(1) $S_{0}=\emptyset$, and:
(2) For all $i \in[q]$:

- $S_{i}=N\left(u_{i}\right) \cup\left\{u_{i}\right\} \cup S_{i-1}$,
- $1 \leq\left|S_{i} \backslash S_{i-1}\right| \leq 2$,
- $u_{i} \notin\left\{u_{1}, \ldots, u_{i-1}\right\}$, and
- $\left|S_{i} \backslash\left(S_{i-1} \cup\left\{u_{i}\right\}\right)\right| \leq 1$.

A B-queue is full if $S_{q}=V(B)$. Example (vertices of S_{i} are colored red):

Theorem (Hoffman-Rodger 1988)

If G is simple and its core admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Definition of B-Queues (Hoffman-Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices $\left(u_{1}, \ldots, u_{q}\right)$ together with a sequence of vertex subsets $\left(S_{0}, S_{1}, \ldots, S_{q}\right)$ such that:
(1) $S_{0}=\emptyset$, and:
(2) For all $i \in[q]$:

- $S_{i}=N\left(u_{i}\right) \cup\left\{u_{i}\right\} \cup S_{i-1}$,
- $1 \leq\left|S_{i} \backslash S_{i-1}\right| \leq 2$,
- $u_{i} \notin\left\{u_{1}, \ldots, u_{i-1}\right\}$, and
- $\left|S_{i} \backslash\left(S_{i-1} \cup\left\{u_{i}\right\}\right)\right| \leq 1$.

A B-queue is full if $S_{q}=V(B)$. Example (vertices of S_{i} are colored red):

Theorem (Hoffman-Rodger 1988)

If G is simple and its core admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Full B-Queue $\Longrightarrow \operatorname{cfan}(B) \leq 0$

Theorem (McDonald-P.)

If B is a simple graph that admits a full B-queue, then $\operatorname{cfan}(B) \leq 0$.

Corollary (Hoffman-Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

Full B-Queue $\Longrightarrow \operatorname{cfan}(B) \leq 0$

Theorem (McDonald-P.)

If B is a simple graph that admits a full B-queue, then $\operatorname{cfan}(B) \leq 0$.

Corollary (Hoffman-Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a full B-queue, then $\chi^{\prime}(G)=\Delta(G)$.

There are graphs with $\operatorname{cfan}(B) \leq 0$ that do not admit a full B-queue, for example:

A Converse Result

Theorem (McDonald-P.)

Let G be a graph with core H. If $\operatorname{cfan}(H) \leq 0$, then $\operatorname{Fan}(G) \leq \Delta(G)$.

Theorem (McDonald-P.)

If H is a graph with $\operatorname{cfan}(H)>0$, then there exists a graph G with H as its core such that $\operatorname{Fan}(G)>\Delta(G)$.

In other words, for a graph H, the following are equivalent:
(1) $\operatorname{cfan}(H) \leq 0$,
(2) For every graph G with t-core $H, \operatorname{Fan}(G) \leq \Delta(G)$.

What Happened to the Multigraphs?

Definition

The t-core of a multigraph G is the set of vertices with $d(v)+\mu(v)>\Delta(G)+t$.
(Ordinary "core" of a simple graph is just the 0 -core.)
Theorem (McDonald-P.)
Let G be a multigraph with t-core H. If $\operatorname{cfan}(H) \leq t$, then
$\chi^{\prime}(G) \leq \operatorname{Fan}(G) \leq \Delta(G)+t$.

Goldberg-Seymour Conjecture

Definition

For a multigraph $G, w(G)=\max _{H \subset G}\left\lceil\frac{|E(H)|}{|V(H)| / 2\rfloor}\right\rceil$.
Observe that always $\chi^{\prime}(G) \geq w(G)$.

Theorem (Goldberg-Seymour Conjecture, Proof Announced by Chen-Jing-Zang)

For a multigraph $G, \chi^{\prime}(G) \leq \max \{\Delta(G)+1, w(G)\}$.

Corollary

For $t \geq 1, \chi^{\prime}(G) \leq \Delta(G)+t$ if and only if $w(G) \leq \Delta(G)+t$.
This seems to largely obsolete other sufficient conditions for $\chi^{\prime}(G) \leq \Delta(G)+t$ when $t \geq 1$.

$$
\mathcal{F I N}
$$

\square 난ㅁ

$\geqslant 2$

