New Cores for Δ -Edge-Colorable Graphs

Jessica McDonald Gregory J. Puleo

Atlanta Lecture Series XXII November 3, 2018

Edge Coloring, Edge Chromatic Number

- A proper edge coloring of a graph assigns a color to each edge so that edges sharing an endpoint (including parallel edges) get different colors.
- The edge chromatic number of G, written χ'(G), is smallest number of colors in a proper edge coloring.

•
$$\chi'(\mathsf{Pete}) = 4.$$

Theorem (Vizing 1964)

If G is a simple graph, then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Holyer 1981)

It is NP-hard to determine, for a simple graph G, whether $\chi'(G) = \Delta(G)$ or whether $\chi'(G) = \Delta(G) + 1$.

Two approaches to continue thinking about edge coloring:

- Look for sufficient conditions. Find a general property P such that if simple G has property P, then χ'(G) = Δ(G).
- Extend to multigraphs.

Theorem (Vizing 1964)

If G is a simple graph, then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Holyer 1981)

It is NP-hard to determine, for a simple graph G, whether $\chi'(G) = \Delta(G)$ or whether $\chi'(G) = \Delta(G) + 1$.

Two approaches to continue thinking about edge coloring:

- Look for sufficient conditions. Find a general property P such that if simple G has property P, then χ'(G) = Δ(G).
- Extend to multigraphs.

Fournier's Theorem, Hoffman-Rodger Theorem

Definition

The core of a simple graph G is the subgraph induced by its vertices of degree $\Delta(G)$.

Theorem (Fournier 1973)

Let G be a simple graph. If the core of G is a forest, then $\chi'(G) = \Delta(G)$.

Fournier's Theorem, Hoffman-Rodger Theorem

Definition

The core of a simple graph G is the subgraph induced by its vertices of degree $\Delta(G)$.

Theorem (Fournier 1973)

Let G be a simple graph. If the core of G is a forest, then $\chi'(G) = \Delta(G)$.

Hoffman–Rodger (1988) defined a B-queue to be a particular vertex ordering of a graph (details later).

Theorem (Hoffman-Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a "full B-queue", then $\chi'(G) = \Delta(G)$.

Hoffman–Rodger also showed: H is a forest \implies H has a full B-queue.

Fan, cfan, and B-Queues

 Scheide and Stiebitz (2010) introduced a parameter called the Fan number of G, written Fan(G), and showed that χ'(G) ≤ Fan(G) for all G. (Details later.)

Fan, cfan, and B-Queues

- Scheide and Stiebitz (2010) introduced a parameter called the Fan number of G, written Fan(G), and showed that χ'(G) ≤ Fan(G) for all G. (Details later.)
- Fan(G) is polynomially computable. Many upper bounds on χ'(G), including Vizing's Theorem, are actually upper bounds on Fan(G).
- We define a variant of this parameter, the cfan number, and prove:

Theorem (McDonald–P.)

Let G be a simple graph, and let H be its core. If $cfan(H) \le 0$, then $\chi'(G) = Fan(G) = \Delta(G)$.

• We show:

H is a forest \implies H has a full B-queue \implies cfan $(H) \le 0$.

 However, there are graphs with cfan(H) ≤ 0 which do not have a full B-queue.

Vizing's Fan Inequality

If xy is an edge in multigraph J, then J - xy is the subgraph with one fewer copy of xy.

Theorem (Vizing 1964)

Let G be a multigraph, let $k \ge \Delta(G)$, and let $J \subset G$. Suppose that J - xy is k-edge-colorable for some $xy \in E(J)$. Either J is k-edge-colorable, or there is a vertex set $Z \subset N_J(x)$ such that:

- **1** $|Z| \ge 2$,
- 2 $y \in Z$, and

Conversely: if J is a minimal non-k-edge-colorable subgraph of G, then for every $xy \in E(J)$, such a set Z must exist.

Vizing's Fan Inequality

If xy is an edge in multigraph J, then J - xy is the subgraph with one fewer copy of xy.

Theorem (Vizing 1964)

Let G be a multigraph, let $k \ge \Delta(G)$, and let $J \subset G$. Suppose that J - xy is k-edge-colorable for some $xy \in E(J)$. Either J is k-edge-colorable, or there is a vertex set $Z \subset N_J(x)$ such that:

- **1** $|Z| \ge 2$,
- $2 y \in Z, and$

Conversely: if J is a minimal non-k-edge-colorable subgraph of G, then for every $xy \in E(J)$, such a set Z must exist.

Observation

If J - xy is k-edge colorable and $d(x) + d(y) - \mu_J(x, y) \le k$, then J is k-edge-colorable. (Edge xy only sees at most k - 1 colors.)

Definition of Fan Number (Scheide-Stiebitz 2010)

Let G be a multigraph. For $J \subset G$ and $xy \in E(J)$, the fan degree of the pair (x, y), written deg_J(x, y), is the smallest nonnegative k such that either:

- $d_J(x) + d_J(y) \mu_J(x, y) \le k$, or
- ② $\sum_{z \in Z} (d_J(z) + \mu_J(x, z) k) \le 1$ for all $Z \subset N_J(x)$ with $y \in Z$ and $|Z| \ge 2$.

Definition of Fan Number (Scheide-Stiebitz 2010)

Let G be a multigraph. For $J \subset G$ and $xy \in E(J)$, the fan degree of the pair (x, y), written deg_J(x, y), is the smallest nonnegative k such that either:

•
$$d_J(x) + d_J(y) - \mu_J(x, y) \le k$$
, or

② $\sum_{z \in Z} (d_J(z) + \mu_J(x, z) - k) \le 1$ for all $Z \subset N_J(x)$ with $y \in Z$ and $|Z| \ge 2$.

The fan number fan(G) of the graph G is defined by

$$fan(G) = \max_{\substack{J \subset G \\ E(J) \neq \emptyset}} \min\{ \deg_J(x, y) \colon xy \in E(J) \}.$$

The Fan number Fan(G) is then given by $Fan(G) = max{fan(G), \Delta(G)}$.

Definition of Fan Number (Scheide-Stiebitz 2010)

Let G be a multigraph. For $J \subset G$ and $xy \in E(J)$, the fan degree of the pair (x, y), written deg_J(x, y), is the smallest nonnegative k such that either:

•
$$d_J(x) + d_J(y) - \mu_J(x, y) \le k$$
, or

② $\sum_{z \in Z} (d_J(z) + \mu_J(x, z) - k) \le 1$ for all $Z \subset N_J(x)$ with $y \in Z$ and $|Z| \ge 2$.

The fan number fan(G) of the graph G is defined by

$$fan(G) = \max_{\substack{J \subset G \\ E(J) \neq \emptyset}} \min\{ \deg_J(x, y) \colon xy \in E(J) \}.$$

The Fan number Fan(G) is then given by $Fan(G) = max{fan(G), \Delta(G)}$.

Theorem (Scheide–Stiebitz 2010)

For every multigraph G, $\chi'(G) \leq \operatorname{Fan}(G)$.

Idea: by previous slide, if J is a minimal non-k-edge-colorable subgraph for $k \ge \Delta(G)$, then for every pair (x, y), we must have deg_J(x, y) > k.

Definition of cfan

Definition (Scheide-Stiebitz 2010)

$$fan(G) = \max_{\substack{J \subset G \\ E(J) \neq \emptyset}} \min\{ \deg_J(x, y) \colon xy \in E(J) \}$$

For $K \subset H$, and $xy \in E(K)$ the cfan degree of the pair (x, y), written $\operatorname{cdeg}_{K}(x, y)$, is the smallest nonnegative ℓ such that:

$$\sum_{z\in Z}\left(d_{\mathcal{K}}(z)-d_{\mathcal{H}}(z)+\mu_{\mathcal{K}}(x,z)-\ell
ight)\leq 1$$
 for all $Z\subset N_{\mathcal{K}}(x)$ with $y\in Z.$

The cfan number of H is then defined by

$$\mathsf{cfan}(H) = \max_{\substack{K \subset H \\ E(K) \neq \emptyset}} \min\{\mathsf{cdeg}_{H,K}(x,y) \colon xy \in E(K)\}.$$

If $E(H) = \emptyset$, then we put cfan(H) = 0.

Theorem (McDonald–P.)

Let G be a simple graph, and let H be its core. If $cfan(H) \leq 0$, then $fan(G) \leq \Delta(G)$. Thus $\chi'(G) \leq Fan(G) = \Delta(G)$.

To show fan(G) $\leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that deg_J $(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

To show $fan(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that $\deg_J(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

Easy Case: K does not contain an edge. Let (x, y) be any pair with $xy \in E(J)$, taking $x \in K$ if possible.

To show $fan(G) \leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that $\deg_J(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

Easy Case: *K* does not contain an edge. Let (x, y) be any pair with $xy \in E(J)$, taking $x \in K$ if possible.

Need: For all $Z \subset N_J(x)$ with $y \in Z$ and $|Z| \ge 2$,

$$\sum_{z\in \mathbb{Z}} \left(d_{J}(z) + 1 - \Delta(G) \right) \leq 1.$$

Easy Case: *K* does not contain an edge. Let (x, y) be any pair with $xy \in E(J)$, taking $x \in K$ if possible.

Need: For all $Z \subset N_J(x)$ with $y \in Z$ and $|Z| \ge 2$,

$$\sum_{z\in \mathbb{Z}} \left(d_J(z) + 1 - \Delta(G) \right) \leq 1.$$

• Any $z \in N_J(x)$ is outside core, hence $d_G(z) + 1 \leq \Delta(G)$.

Easy Case: *K* does not contain an edge. Let (x, y) be any pair with $xy \in E(J)$, taking $x \in K$ if possible.

Need: For all $Z \subset N_J(x)$ with $y \in Z$ and $|Z| \ge 2$,

$$\sum_{z\in \mathbb{Z}} \left(d_{\mathbf{J}}(z) + 1 - \Delta(G) \right) \leq 1.$$

• Any $z \in N_J(x)$ is outside core, hence $d_G(z) + 1 \le \Delta(G)$.

• Therefore,

$$\sum_{z\in \mathbb{Z}} \left(d_{\mathbf{J}}(z) + 1 - \Delta(G) \right) \leq \sum_{z\in \mathbb{Z}} 0 = 0.$$

To show fan(G) $\leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that deg_J $(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

Harder Case: K contains an edge. Take $xy \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$.

To show fan(G) $\leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that deg_J $(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

Harder Case: *K* contains an edge. Take $xy \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$. **Need:** For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$, $\sum_{z \in Z} (d_{J}(z) + 1 - \Delta(G)) \leq 1$.

To show fan(G) $\leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that deg_J $(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

Harder Case: *K* contains an edge. Take $xy \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$. **Need:** For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$, $\sum_{z \in Z} (d_{J}(z) + 1 - \Delta(G)) \leq 1$.

Any z ∈ Z \ V(K) is outside core, hence contributes at most 0 to the sum.

Harder Case: *K* contains an edge. Take $xy \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$. **Need:** For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$, $\sum_{z \in Z} (d_{J}(z) + 1 - \Delta(G)) \leq 1$.

- Any z ∈ Z \ V(K) is outside core, hence contributes at most 0 to the sum.
- For vertices $z \in Z \cap V(K)$, we have

$$d_J(z) + 1 \leq \Delta(H) + (d_K(z) - d_H(z)) + 1,$$

with an upper bound on $\sum_{z\in \mathbb{Z}}(1+d_{\mathcal{K}}(z)-d_{\mathcal{H}}(z))$ from cfan ≤ 0 .

To show fan(G) $\leq \Delta(G)$, take any nonempty subgraph $J \subset V(G)$. **Need**: a pair (x, y) with $xy \in E(J)$ such that deg_J $(x, y) \leq \Delta(G)$. Let $K = J \cap V(H)$.

Harder Case: *K* contains an edge. Take $xy \in E(K)$ with $\operatorname{cdeg}_{K}(x, y) \leq 0$. **Need:** For all $Z \subset N_{J}(x)$ with $y \in Z$ and $|Z| \geq 2$, $\sum_{z \in Z} (d_{J}(z) + 1 - \Delta(G)) \leq 1$.

- Any z ∈ Z \ V(K) is outside core, hence contributes at most 0 to the sum.
- For vertices $z \in Z \cap V(K)$, we have

$$d_J(z) + 1 \leq \Delta(H) + (d_K(z) - d_H(z)) + 1,$$

with an upper bound on $\sum_{z\in Z}(1+d_{\mathcal{K}}(z)-d_{\mathcal{H}}(z))$ from cfan ≤ 0 .

• This gives the desired bound on $\sum_{z \in Z} (d_J(z) + 1 - \Delta(G))$.

A *B*-queue of a simple graph *B* is a sequence of vertices (u_1, \ldots, u_q) together with a sequence of vertex subsets (S_0, S_1, \ldots, S_q) such that:

1
$$S_0 = \emptyset$$
, and:
2 For all *i* ∈ [*q*]:
• $S_i = N(u_i) \cup \{u_i\} \cup S_{i-1}$,
• $1 \le |S_i \setminus S_{i-1}| \le 2$,
• $u_i \notin \{u_1, \dots, u_{i-1}\}$, and
• $|S_i \setminus (S_{i-1} \cup \{u_i\})| \le 1$.

A *B*-queue is full if $S_q = V(B)$. **Example** (vertices of S_i are colored red):

Theorem (Hoffman–Rodger 1988)

A *B*-queue of a simple graph *B* is a sequence of vertices (u_1, \ldots, u_q) together with a sequence of vertex subsets (S_0, S_1, \ldots, S_q) such that:

1
$$S_0 = \emptyset$$
, and:
2 For all *i* ∈ [*q*]:
• $S_i = N(u_i) \cup \{u_i\} \cup S_{i-1}$,
• $1 \le |S_i \setminus S_{i-1}| \le 2$,
• $u_i \notin \{u_1, ..., u_{i-1}\}$, and
• $|S_i \setminus (S_{i-1} \cup \{u_i\})| \le 1$.

A *B*-queue is full if $S_q = V(B)$. Example (vertices of S_i are colored red):

Theorem (Hoffman–Rodger 1988)

A *B*-queue of a simple graph *B* is a sequence of vertices (u_1, \ldots, u_q) together with a sequence of vertex subsets (S_0, S_1, \ldots, S_q) such that:

1
$$S_0 = \emptyset$$
, and:
2 For all *i* ∈ [*q*]:
• $S_i = N(u_i) \cup \{u_i\} \cup S_{i-1}$
• $1 \le |S_i \setminus S_{i-1}| \le 2$,
• $u_i \notin \{u_1, \dots, u_{i-1}\}$, and
• $|S_i \setminus (S_{i-1} \cup \{u_i\})| \le 1$.

A *B*-queue is full if $S_q = V(B)$. **Example** (vertices of S_i are colored red):

Theorem (Hoffman–Rodger 1988)

A *B*-queue of a simple graph *B* is a sequence of vertices (u_1, \ldots, u_q) together with a sequence of vertex subsets (S_0, S_1, \ldots, S_q) such that:

,

1
$$S_0 = \emptyset$$
, and:
2 For all *i* ∈ [*q*]:
• $S_i = N(u_i) \cup \{u_i\} \cup S_{i-1}$
• $1 \le |S_i \setminus S_{i-1}| \le 2$,
• $u_i \notin \{u_1, \dots, u_{i-1}\}$, and
• $|S_i \setminus (S_{i-1} \cup \{u_i\})| \le 1$.

A *B*-queue is full if $S_q = V(B)$. Example (vertices of S_i are colored red):

Theorem (Hoffman–Rodger 1988)

A *B*-queue of a simple graph *B* is a sequence of vertices (u_1, \ldots, u_q) together with a sequence of vertex subsets (S_0, S_1, \ldots, S_q) such that:

1
$$S_0 = \emptyset$$
, and:
2 For all *i* ∈ [*q*]:
• $S_i = N(u_i) \cup \{u_i\} \cup S_{i-1}$
• $1 \le |S_i \setminus S_{i-1}| \le 2$,
• $u_i \notin \{u_1, \dots, u_{i-1}\}$, and
• $|S_i \setminus (S_{i-1} \cup \{u_i\})| \le 1$.

A *B*-queue is full if $S_q = V(B)$. Example (vertices of S_i are colored red):

Theorem (Hoffman–Rodger 1988)

A *B*-queue of a simple graph *B* is a sequence of vertices (u_1, \ldots, u_q) together with a sequence of vertex subsets (S_0, S_1, \ldots, S_q) such that:

1
$$S_0 = \emptyset$$
, and:
2 For all *i* ∈ [*q*]:
• $S_i = N(u_i) \cup \{u_i\} \cup S_{i-1}$
• $1 \le |S_i \setminus S_{i-1}| \le 2$,
• $u_i \notin \{u_1, \dots, u_{i-1}\}$, and
• $|S_i \setminus (S_{i-1} \cup \{u_i\})| \le 1$.

A *B*-queue is full if $S_q = V(B)$. **Example** (vertices of S_i are colored red):

Theorem (Hoffman–Rodger 1988)

Theorem (McDonald–P.)

If B is a simple graph that admits a full B-queue, then $cfan(B) \leq 0$.

Corollary (Hoffman–Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a full B-queue, then $\chi'(G) = \Delta(G)$.

Theorem (McDonald–P.)

If B is a simple graph that admits a full B-queue, then $cfan(B) \leq 0$.

Corollary (Hoffman–Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a full B-queue, then $\chi'(G) = \Delta(G)$.

There are graphs with $cfan(B) \le 0$ that do not admit a full *B*-queue, for example:

Theorem (McDonald–P.)

Let G be a graph with core H. If $cfan(H) \leq 0$, then $Fan(G) \leq \Delta(G)$.

Theorem (McDonald–P.)

If H is a graph with cfan(H) > 0, then there exists a graph G with H as its core such that $Fan(G) > \Delta(G)$.

In other words, for a graph H, the following are equivalent:

• cfan
$$(H) \leq 0$$
,

② For every graph G with t-core H, $Fan(G) \leq \Delta(G)$.

Definition

The *t*-core of a multigraph *G* is the set of vertices with $d(v) + \mu(v) > \Delta(G) + t$. (Ordinary "core" of a simple graph is just the 0-core.)

Theorem (McDonald–P.)

Let G be a multigraph with t-core H. If $cfan(H) \le t$, then $\chi'(G) \le Fan(G) \le \Delta(G) + t$.

Goldberg-Seymour Conjecture

Definition

For a multigraph G,
$$w(G) = \max_{H \subset G} \left[\frac{|E(H)|}{\lfloor |V(H)|/2 \rfloor} \right]$$
.

Observe that always
$$\chi'(G) \geq w(G)$$
.

Theorem (Goldberg–Seymour Conjecture, Proof Announced by Chen–Jing–Zang)

For a multigraph G, $\chi'(G) \leq \max{\{\Delta(G) + 1, w(G)\}}$.

Corollary

For
$$t \ge 1$$
, $\chi'(G) \le \Delta(G) + t$ if and only if $w(G) \le \Delta(G) + t$.

This seems to largely obsolete other sufficient conditions for $\chi'(G) \leq \Delta(G) + t$ when $t \geq 1$.

\mathcal{FIN}