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Edge Coloring, Edge Chromatic Number

o A of a graph
/| assigns a color to each so that
(including parallel edges) get
[
\ e — different colors.
e The of G,

written x'(G), is smallest number

/ \ of colors in a proper edge coloring.

o \/(Pete) = 4.



Vizing's Theorem for Simple Graphs

Theorem (Vizing 1964)
If G is a simple graph, then A(G) < X'(G) < A(G) + 1.

Theorem (Holyer 1981)

It is NP-hard to determine, for a simple graph G, whether X'(G) = A(G)
or whether X'(G) = A(G) + 1.

Two approaches to continue thinking about edge coloring:

@ Look for sufficient conditions. Find a general property P such that if
simple G has property P, then x'(G) = A(G).

o Extend to multigraphs.
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Fournier's Theorem, Hoffman—Rodger Theorem

Definition

The of a simple graph G is the subgraph induced by its vertices of
degree A(G).

Theorem (Fournier 1973)
Let G be a simple graph. If the core of G is a forest, then X'(G) = A(G).

Hoffman—Rodger (1988) defined a to be a particular vertex
ordering of a graph (details later).
Theorem (Hoffman—Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a *“
", then X'(G) = A(G).

Hoffman—Rodger also showed: H is a forest = H has a full B-queue.



Fan, cfan, and B-Queues

@ Scheide and Stiebitz (2010) introduced a parameter called the
of G, written Fan(G), and showed that x/(G) < Fan(G) for
all G. (Details later.)



Fan, cfan, and B-Queues

@ Scheide and Stiebitz (2010) introduced a parameter called the
of G, written Fan(G), and showed that x/(G) < Fan(G) for
all G. (Details later.)
e Fan(G) is polynomially computable. Many upper bounds on x/(G),
including Vizing's Theorem, are actually upper bounds on Fan(G).
o We define a variant of this parameter, the , and prove:

Theorem (McDonald-P.)

Let G be a simple graph, and let H be its core. If cfan(H) < 0, then
X'(G) = Fan(G) = A(G).

o We show:

H is a forest = H has a full B-queue = cfan(H) < 0.

@ However, there are graphs with cfan(H) < 0 which do not have a full
B-queue.



Vizing's Fan Inequality

If xy is an edge in multigraph J, then J — xy is the subgraph with
of xy.

Theorem (Vizing 1964)

Let G be a multigraph, let k > A(G), and let J C G.

Suppose that J — xy is k-edge-colorable for some xy € E(J).

Either J is k-edge-colorable, or there is a vertex set Z C N(x) such that:
Q [Z|>2
© ycZ and

© >, (di(2) + pu(x,2) — k) > 2.

Conversely: if Jis a of G, then for
xy € E(J), such a set Z must exist.



Vizing's Fan Inequality

If xy is an edge in multigraph J, then J — xy is the subgraph with
of xy.

Theorem (Vizing 1964)

Let G be a multigraph, let k > A(G), and let J C G.
Suppose that J — xy is k-edge-colorable for some xy € E(J).
Either J is k-edge-colorable, or there is a vertex set Z C N(x) such that:

Q [Z]>2
Q@ ycZ and
Q >, - (dy(2)+ py(x,2) — k) > 2.
Conversely: if Jis a of G, then for

xy € E(J), such a set Z must exist.

Observation

If J — xy is k-edge colorable and d(x) + d(y) — us(x,y) < k, then J is
k-edge-colorable. (Edge xy only sees at most k — 1 colors.)




Definition of Fan Number (Scheide=Stiebitz 2010)

Let G be a multigraph. For J C G and xy € E(J), the of the

pair (x,y), written deg,(x, y), is the smallest nonnegative k such that
either:

Q dy(x) +ds(y) — nu(x.y) <k,

Q@ >, -(dy(z) + py(x,z) — k) <1forall ZC Ny(x) with y € Z and
|Z] > 2.



Definition of Fan Number (Scheide=Stiebitz 2010)

Let G be a multigraph. For J C G and xy € E(J), the of the
pair (x,y), written deg,(x, y), is the smallest nonnegative k such that
either:

Q@ dy(x) + dyy) — ps(x,y) <k,

Q@ >, -(dy(z) + py(x,z) — k) <1forall ZC Ny(x) with y € Z and

|1Z| > 2.
The fan(G) of the graph G is defined by
fan(G) = max min{deg,(x,y): xy € E(J)}.

JCG
E(J)#£0

The Fan(G) is then given by Fan(G) = max{fan(G), A(G)}.



Definition of Fan Number (Scheide=Stiebitz 2010)

Let G be a multigraph. For J C G and xy € E(J), the of the
pair (x,y), written deg,(x, y), is the smallest nonnegative k such that
either:

Q@ d,(x) +ds(y) — pslx,y) < k,
Q@ >, -(dy(z) + py(x,z) — k) <1forall ZC Ny(x) with y € Z and

|Z] > 2.
The fan(G) of the graph G is defined by
fan(G) = max min{deg,(x,y): xy € E(J)}.
C
E(J)#0
The Fan(G) is then given by Fan(G) = max{fan(G), A(G)}.

Theorem (Scheide—Stiebitz 2010)
For every multigraph G, x'(G) < Fan(G).

by previous slide, if J is a minimal non-k-edge-colorable subgraph for
k > A(G), then for every pair (x, y), we must have deg,(x,y) > k.



Definition of cfan

Definition (Scheide-Stiebitz 2010)

fan(G) = max min{deg,(x,y): xy € E(J)}
()0

For K C H, and xy € E(K) the of the pair (x, y), written
cdegi(x,y), is the smallest nonnegative ¢ such that:

Y sez (dk(2) = du(z) + pk(x,z) =€) < 1 for all Z C Nk(x) with y € Z.
The of H is then defined by
cfan(H) = max min{cdegy x(x,y): xy € E(K)}.
E(K)#£0
If E(H) =0, then we put cfan(H) = 0.

Theorem (McDonald-P.)

Let G be a simple graph, and let H be its core. If cfan(H) < 0, then
fan(G) < A(G). Thus X/(G) < Fan(G) = A(G).




Proof Sketch: cfan(H) <0 = fan(G) < A(G)

To show fan(G) < A(G), take any
nonempty subgraph J C V(G).
H|K J G Need: a pair (x,y) with xy € E(J)
such that deg (x, y) < A(G).

Let K = JN V(H).
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To show fan(G) < A(G), take any
—e nonempty subgraph J C V(G).
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Easy Case: K does not contain an edge. Let (x,y) be any pair with
xy € E(J), taking x € K if possible.
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@ Any z € Ny(x) is outside core, hence dg(z) +1 < A(G).
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To show fan(G) < A(G), take any
nonempty subgraph J C V(G).
Need: a pair (x,y) with xy € E(J)
such that deg (x, y) < A(G).

Let K =JN V(H).

Easy Case: K does not contain an edge. Let (x,y) be any pair with
xy € E(J), taking x € K if possible.

Need: For all Z C Ny(x) with y € Z and |Z] > 2,

D (di(z2)+1-A(G) < 1.

zeZ

T

X

X @
N <e

(.

()

@ Any z € Ny(x) is outside core, hence dg(z) +1 < A(G).
@ Therefore,

> (di(z2)+1-A(G) <D 0=0.

zeZ zeZ
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X nonempty subgraph J C V(G).
H|K I J G Need: a pair (x,y) with xy € E(J)
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Let K = J N V(H).
Harder Case: K contains an edge. Take xy € E(K) with
cdegyc(x,y) < 0.
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To show fan(G) < A(G), take any
X T nonempty subgraph J C V(G).
H|K = J G Need: a pair (x,y) with xy € E(J)
Y such that deg (x, y) < A(G).
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Need: For all Z C Ny(x) with y € Z and |Z] > 2,

>ozez (di(2) +1-A(G)) < 1.

e Any z € Z\ V(K) is outside core, hence contributes at most 0 to the
sum.



Proof Sketch: cfan(H) <0 = fan(G) < A(G)
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To show fan(G) < A(G), take any
nonempty subgraph J C V(G).
Need: a pair (x,y) with xy € E(J)
such that deg (x, y) < A(G).

Let K = J N V(H).

Harder Case: K contains an edge. Take xy € E(K) with
cdegyc(x,y) < 0.
Need: For all Z C Ny(x) with y € Z and |Z] > 2,

>ozez (di(2) +1-A(G)) < 1.

e Any z € Z\ V(K) is outside core, hence contributes at most 0 to the
sum.

@ For vertices z € Z N V(K), we have

d)(2) + 1 < A(H) + (d(2) — du(2)) + 1,

with an upper bound on } (1 + dk(z) — du(z)) from cfan < 0.



Proof Sketch: cfan(H) <0 = fan(G) < A(G)

To show fan(G) < A(G), take any
X T nonempty subgraph J C V(G).
H|K = J G Need: a pair (x,y) with xy € E(J)
Y such that deg (x, y) < A(G).

Let K = J N V(H).
Harder Case: K contains an edge. Take xy € E(K) with
cdegi(x,y) <O0.
Need: For all Z C Ny(x) with y € Z and |Z] > 2,
2zez (ds(2) +1-A(6)) < 1.
e Any z € Z\ V(K) is outside core, hence contributes at most 0 to the
sum.

@ For vertices z € Z N V(K), we have
dy(z) +1 < A(H) + (dk(2) — dn(z2)) + 1,

with an upper bound on } (1 + dk(z) — du(z)) from cfan < 0.
@ This gives the desired bound on },_,(d,(z) + 1 — A(G)).



Definition of B-Queues (Hoffman—Rodger 1988)

A of a simple graph B is a sequence of vertices (u1, ..., ug)
together with a sequence of vertex subsets (Sg, S1,...,Sq) such that:
(1) 50 = @, and:

@ For all i € [q]:
e S = N(u,-) U {u,-} usS;_1,
o 1 <5\ 51 <2,
o ui ¢ {u,...,ui—1}, and
o [Si\(Si-1u{u}) <1
A B-queue is if S; = V(B). Example (vertices of S; are colored red):

Theorem (Hoffman—Rodger 1988)

If G is simple and its core admits a full B-queue, then x'(G) = A(G).
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Definition of B-Queues (Hoffman—Rodger 1988)

A of a simple graph B is a sequence of vertices (uy,
together with a sequence of vertex subsets (So, S1,
(1) 50 = @, and:
@ For all i € [q]:
e S = N(u,-) U {u,-} usS;_1,
o 1 <5\ 51 <2,
o ui ¢ {u,...,ui—1}, and
° |5, \ (S,',l @] {U,})‘ <1
A B-queue is if S; = V(B). Example (vertices of S; are colored red):

u» Uy

S, Ug)
.., Sq) such that:

u uz Us




Full B-Queue — cfan(B) <0

Theorem (McDonald-P.)
If B is a simple graph that admits a full B-queue, then cfan(B) < 0.

Corollary (Hoffman—Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a full
B-queue, then X'(G) = A(G).




Full B-Queue — cfan(B) <0

Theorem (McDonald-P.)
If B is a simple graph that admits a full B-queue, then cfan(B) < 0.

Corollary (Hoffman—Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a full
B-queue, then X'(G) = A(G).

There are graphs with cfan(B) < 0 that do not admit a full B-queue, for
example:



A Converse Result

Theorem (McDonald-P.)

Let G be a graph with core H. If cfan(H) < 0, then Fan(G) < A(G).

Theorem (McDonald-P.)

If H is a graph with cfan(H) > 0, then there exists a graph G with H as
its core such that Fan(G) > A(G).

In other words, for a graph H, the following are equivalent:
@ cfan(H) <0,
@ For every graph G with t-core H, Fan(G) < A(G).



What Happened to the Multigraphs?

Definition

The of a multigraph G is the set of vertices with
d(v) + u(v) > A(G) + t.
(Ordinary “core” of a simple graph is just the O-core.)

Theorem (McDonald-P.)

Let G be a multigraph with t-core H. If cfan(H) < t, then
X'(G) < Fan(G) < A(G) + t.



Goldberg—Seymour Conjecture

Definition

For a multigraph G, w(G) = maxycg {%—‘

Observe that always x'(G) > w(G).

Theorem (Goldberg—Seymour Conjecture, Proof Announced by
Chen—Jing—Zang)

For a multigraph G, x'(G) < max{A(G) + 1, w(G)}.

Corollary
Fort>1, X'(G) < A(G) + t if and only if w(G) < A(G) + t.

This seems to largely obsolete other sufficient conditions for
X'(G) < A(G) + t when t > 1.



FIN



https://arxiv.org/abs/1710.08982

