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Edge Coloring, Edge Chromatic Number

A proper edge coloring of a graph
assigns a color to each edge so that
edges sharing an endpoint
(including parallel edges) get
different colors.

The edge chromatic number of G ,
written χ′(G ), is smallest number
of colors in a proper edge coloring.

χ′(Pete) = 4.



Vizing’s Theorem for Simple Graphs

Theorem (Vizing 1964)

If G is a simple graph, then ∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1.

Theorem (Holyer 1981)

It is NP-hard to determine, for a simple graph G , whether χ′(G ) = ∆(G )
or whether χ′(G ) = ∆(G ) + 1.

Two approaches to continue thinking about edge coloring:

Look for sufficient conditions. Find a general property P such that if
simple G has property P, then χ′(G ) = ∆(G ).

Extend to multigraphs.
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Fournier’s Theorem, Hoffman–Rodger Theorem

Definition

The core of a simple graph G is the subgraph induced by its vertices of
degree ∆(G ).

Theorem (Fournier 1973)

Let G be a simple graph. If the core of G is a forest, then χ′(G ) = ∆(G ).

Hoffman–Rodger (1988) defined a B-queue to be a particular vertex
ordering of a graph (details later).

Theorem (Hoffman–Rodger 1988)

Let G be a simple graph, and let H be its core. If H admits a “full
B-queue”, then χ′(G ) = ∆(G ).

Hoffman–Rodger also showed: H is a forest =⇒ H has a full B-queue.
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Fan, cfan, and B-Queues

Scheide and Stiebitz (2010) introduced a parameter called the Fan
number of G , written Fan(G ), and showed that χ′(G ) ≤ Fan(G ) for
all G . (Details later.)

Fan(G ) is polynomially computable. Many upper bounds on χ′(G ),
including Vizing’s Theorem, are actually upper bounds on Fan(G ).

We define a variant of this parameter, the cfan number, and prove:

Theorem (McDonald–P.)

Let G be a simple graph, and let H be its core. If cfan(H) ≤ 0, then
χ′(G ) = Fan(G ) = ∆(G ).

We show:

H is a forest =⇒ H has a full B-queue =⇒ cfan(H) ≤ 0.

However, there are graphs with cfan(H) ≤ 0 which do not have a full
B-queue.
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Vizing’s Fan Inequality

If xy is an edge in multigraph J, then J − xy is the subgraph with one
fewer copy of xy .

Theorem (Vizing 1964)

Let G be a multigraph, let k ≥ ∆(G ), and let J ⊂ G .
Suppose that J − xy is k-edge-colorable for some xy ∈ E (J).
Either J is k-edge-colorable, or there is a vertex set Z ⊂ NJ(x) such that:

1 |Z | ≥ 2,

2 y ∈ Z , and

3
∑

z∈Z (dJ(z) + µJ(x , z)− k) ≥ 2.

Conversely: if J is a minimal non-k-edge-colorable subgraph of G , then for
every xy ∈ E (J), such a set Z must exist.

Observation

If J − xy is k-edge colorable and d(x) + d(y)− µJ(x , y) ≤ k , then J is
k-edge-colorable. (Edge xy only sees at most k − 1 colors.)
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Definition of Fan Number (Scheide–Stiebitz 2010)

Let G be a multigraph. For J ⊂ G and xy ∈ E (J), the fan degree of the
pair (x , y), written degJ(x , y), is the smallest nonnegative k such that
either:

1 dJ(x) + dJ(y)− µJ(x , y) ≤ k , or
2

∑
z∈Z (dJ(z) + µJ(x , z)− k) ≤ 1 for all Z ⊂ NJ(x) with y ∈ Z and

|Z | ≥ 2.

The fan number fan(G ) of the graph G is defined by

fan(G ) = max
J⊂G

E(J)6=∅

min{degJ(x , y) : xy ∈ E (J)}.

The Fan number Fan(G ) is then given by Fan(G ) = max{fan(G ),∆(G )}.

Theorem (Scheide–Stiebitz 2010)

For every multigraph G , χ′(G ) ≤ Fan(G ).

Idea: by previous slide, if J is a minimal non-k-edge-colorable subgraph for
k ≥ ∆(G ), then for every pair (x , y), we must have degJ(x , y) > k .
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Definition of cfan

Definition (Scheide–Stiebitz 2010)

fan(G ) = max
J⊂G

E(J)6=∅

min{degJ(x , y) : xy ∈ E (J)}

For K ⊂ H, and xy ∈ E (K ) the cfan degree of the pair (x , y), written
cdegK (x , y), is the smallest nonnegative ` such that:∑

z∈Z (dK (z)− dH(z) + µK (x , z)− `) ≤ 1 for all Z ⊂ NK (x) with y ∈ Z .

The cfan number of H is then defined by

cfan(H) = max
K⊂H

E(K)6=∅

min{cdegH,K (x , y) : xy ∈ E (K )}.

If E (H) = ∅, then we put cfan(H) = 0.

Theorem (McDonald–P.)

Let G be a simple graph, and let H be its core. If cfan(H) ≤ 0, then
fan(G ) ≤ ∆(G ). Thus χ′(G ) ≤ Fan(G ) = ∆(G ).



Proof Sketch: cfan(H) ≤ 0 =⇒ fan(G ) ≤ ∆(G )
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To show fan(G ) ≤ ∆(G ), take any
nonempty subgraph J ⊂ V (G ).
Need: a pair (x , y) with xy ∈ E (J)
such that degJ(x , y) ≤ ∆(G ).
Let K = J ∩ V (H).
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nonempty subgraph J ⊂ V (G ).
Need: a pair (x , y) with xy ∈ E (J)
such that degJ(x , y) ≤ ∆(G ).
Let K = J ∩ V (H).

Easy Case: K does not contain an edge. Let (x , y) be any pair with
xy ∈ E (J), taking x ∈ K if possible.

Need: For all Z ⊂ NJ(x) with y ∈ Z and |Z | ≥ 2,∑
z∈Z

(dJ(z) + 1−∆(G )) ≤ 1.

Any z ∈ NJ(x) is outside core, hence dG (z) + 1 ≤ ∆(G ).

Therefore, ∑
z∈Z

(dJ(z) + 1−∆(G )) ≤
∑
z∈Z

0 = 0.
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nonempty subgraph J ⊂ V (G ).
Need: a pair (x , y) with xy ∈ E (J)
such that degJ(x , y) ≤ ∆(G ).
Let K = J ∩ V (H).

Harder Case: K contains an edge. Take xy ∈ E (K ) with
cdegK (x , y) ≤ 0.

Need: For all Z ⊂ NJ(x) with y ∈ Z and |Z | ≥ 2,∑
z∈Z (dJ(z) + 1−∆(G )) ≤ 1.

Any z ∈ Z \ V (K ) is outside core, hence contributes at most 0 to the
sum.

For vertices z ∈ Z ∩ V (K ), we have

dJ(z) + 1 ≤ ∆(H) + (dK (z)− dH(z)) + 1,

with an upper bound on
∑

z∈Z (1 + dK (z)− dH(z)) from cfan ≤ 0.

This gives the desired bound on
∑

z∈Z (dJ(z) + 1−∆(G )).
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Definition of B-Queues (Hoffman–Rodger 1988)

A B-queue of a simple graph B is a sequence of vertices (u1, . . . , uq)
together with a sequence of vertex subsets (S0, S1, . . . ,Sq) such that:

1 S0 = ∅, and:
2 For all i ∈ [q]:

Si = N(ui ) ∪ {ui} ∪ Si−1,
1 ≤ |Si \ Si−1| ≤ 2,
ui /∈ {u1, . . . , ui−1}, and
|Si \ (Si−1 ∪ {ui})| ≤ 1.

A B-queue is full if Sq = V (B). Example (vertices of Si are colored red):

u1

u2

u3

u4

u5

Theorem (Hoffman–Rodger 1988)

If G is simple and its core admits a full B-queue, then χ′(G ) = ∆(G ).
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Full B-Queue =⇒ cfan(B) ≤ 0
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If B is a simple graph that admits a full B-queue, then cfan(B) ≤ 0.

Corollary (Hoffman–Rodger 1988)
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B-queue, then χ′(G ) = ∆(G ).

There are graphs with cfan(B) ≤ 0 that do not admit a full B-queue, for
example:
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A Converse Result

Theorem (McDonald–P.)

Let G be a graph with core H. If cfan(H) ≤ 0, then Fan(G ) ≤ ∆(G ).

Theorem (McDonald–P.)

If H is a graph with cfan(H) > 0, then there exists a graph G with H as
its core such that Fan(G ) > ∆(G ).

In other words, for a graph H, the following are equivalent:

1 cfan(H) ≤ 0,

2 For every graph G with t-core H, Fan(G ) ≤ ∆(G ).



What Happened to the Multigraphs?

Definition

The t-core of a multigraph G is the set of vertices with
d(v) + µ(v) > ∆(G ) + t.
(Ordinary “core” of a simple graph is just the 0-core.)

Theorem (McDonald–P.)

Let G be a multigraph with t-core H. If cfan(H) ≤ t, then
χ′(G ) ≤ Fan(G ) ≤ ∆(G ) + t.



Goldberg–Seymour Conjecture

Definition

For a multigraph G , w(G ) = maxH⊂G

⌈
|E(H)|
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⌉
.

Observe that always χ′(G ) ≥ w(G ).

Theorem (Goldberg–Seymour Conjecture, Proof Announced by
Chen–Jing–Zang)

For a multigraph G , χ′(G ) ≤ max{∆(G ) + 1,w(G )}.

Corollary

For t ≥ 1, χ′(G ) ≤ ∆(G ) + t if and only if w(G ) ≤ ∆(G ) + t.

This seems to largely obsolete other sufficient conditions for
χ′(G ) ≤ ∆(G ) + t when t ≥ 1.
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